区块链如何零信任(区块链去信任化什么意思)

网上有关“区块链如何零信任(区块链去信任化什么意思)”话题很是火热,小编也是针对区块链如何零信任(区块链去信任化什么意思)寻找了一些与之相关的一些信息进行分析,如果能碰巧解决你现在面临的问题,希望能够帮助到您。

区块链原理?

区块链是一种分布式共享记账的技术,它要做的事情就是让参与的各方能够在技术层面建立信任关系。

区块链可以大致分成两个层面,一是做区块链底层技术;二是做区块链上层应用,即基于区块链的改造、优化或者创新应用。

区块链的核心意义到底是什么,我们的理解是,区块链最核心的意义是参与方之间建立数据信用,通过单方面的对抗,在明确规定下打造单方面的生态共同保障完整机会,这是一个体系,这种建立可以结束没有区块链之前的问题,没有区块链之前,在数据共享的时候是无法做到有新的共享,即使做定向也只是给你一个接口,区块链有了以后,让参与方是实现信用的共享,欢迎关注兄弟连区块链学院。

区块链领域的创新最重要的是什么?

区块链创新最重要的是底层技术开发:

1、分布式账本,就是交易记账由分布在不同地方的多个节点共同完成,而且每一个节点都记录的是完整的账目,因此它们都可以参与监督交易合法性,同时也可以共同为其证实。

2、非对称加密和授权技术,即在区块链中储存的交易资讯可以被公开,但是账户身份信息是高度加密的,必须经过数据拥有者授权的情况下才能访问到,从而保证了数据的安全和个人的隐私。

3、共识机制,就是所有记账节点之间怎么达成共识,去认定一个记录的有效性,这既是认定的手段,也是防止篡改的手段。区块链技术为解决各种应用场合提供了四种不同的共识机制,以求达到高效与安全的均衡。

4、智能合约,是建立在这种可靠、不可更改的基础上,能够自动地实现某些预先设定的规则和条款。以保险为例,如果说每个人的信息包括医疗信息和风险发生的信息、都是真实可信的,那就很容易在一些标准化的保险产品中,去进行自动化的理赔。

为什么说区块链是“去信任”的?

维基百科中,从心理学角度对信任的解释如下:

Trustisbelievingthatthepersonwhoistrustedwilldowhatisexpected.

信任是指,相信被信任的人会做出预期的事。

结合我对信任的理解,信任包含几个关键点:

1.?信任是一个心理预判。

2.信任是有程度的。

3.信任是单向的。比如我信任你,但你不一定信任我。

4.信任是有维度的。

道德上的信任:我信任他不会干坏事。

能力上的信任:我信任他能搞定这个事。

心理预判一般来源于两个因素:历史经验和客观规律。当然,这两个因素并不矛盾。事实上,我们大部分的预判,是同时建立在这两个因素之上的。

构建信任关系除了可以让彼此的信任的双方得到心理的上的愉悦感外,更重要的是,信任可以提升合作效率,甚至完成一些单体无法完成的事情。对于历史经验形成的信任关系,需要靠时间来积累。如果双方合作,都要从0开始积累,显然是低效的。为了提升效率,我们常常会引入第三方,在双方无历史经验可供参考的情况下,来实现两者间的合作关系。我们可以把这个第三方信任机构或工具称之为“信任中介”。

原子模型

信任传递:A信任T,T信任B,A可以通过T间接的与B产生合作关系。比如B想借钱,T没钱,A有钱;此时A可以把钱先给T,T再把钱给B。当B违约时,T帮B把钱还给A。

去信任:A信任T,B信任T。在A和B在互不信任的情况下,A和B将各自需求提给T,由T来达成A和B各自的需求;或者A直接与B产生合作关系,但都是在T的监视下完成,由T来确保A和B都是按交易的要求完成的。

注:**箭头代表着信任的方向。

其中“信任传递”和“去信任”的主要区别在于,信任传递中的T参与双方的交易,也承担责任;而去信任模型中的T,不参与交易,也不承担责任。

区块链本身是一个平台工具,提供了一个不可篡改的记账服务。他无法促使交易双方彼此互相信任,也无法参与到双方的交易中;作为一个没有生命的工具,当然也无法承担交易责任(比如A违约,B发假货啥的,都属于交易责任;至于记账的正确性,系统的安全性责任,当然还是由区块链保障)。因此区块链所实现的是“去信任”模型,而非“信任传递”模型。

当然,在区块链记录大量交易数据后,则给人提供了一种可靠的经验数据。比如当A不信任B时,但在链上可以查阅B发生了大量的成功交易。此时A可以判断,B是一个可以相信的人。这是一个衍生的能力。也就是我们常提的“增信”的由来。无论是否有历史交易数据,在区块链平台上的交易仍然是在去信任模型下完成的。

信任是一个泛概念,包含的场景非常丰富,比如合作信任、感情信任、交易信任……而在区块链的世界里,当前主要涉及的场景是交易信任。当然,还可以利用区块链的不可篡改性提供存证服务,以解决其他场景的信任问题。

至于区块链如何做到不可篡改的记账服务,请参见《区块链如何确保交易安全?》

区块链使用安全如何来保证呢

区块链本身解决的就是陌生人之间大规模协作问题,即陌生人在不需要彼此信任的情况下就可以相互协作。那么如何保证陌生人之间的信任来实现彼此的共识机制呢?中心化的系统利用的是可信的第三方背书,比如银行,银行在老百姓看来是可靠的值得信任的机构,老百姓可以信赖银行,由银行解决现实中的纠纷问题。但是,去中心化的区块链是如何保证信任的呢?

实际上,区块链是利用现代密码学的基础原理来确保其安全机制的。密码学和安全领域所涉及的知识体系十分繁杂,我这里只介绍与区块链相关的密码学基础知识,包括Hash算法、加密算法、信息摘要和数字签名、零知识证明、量子密码学等。您可以通过这节课来了解运用密码学技术下的区块链如何保证其机密性、完整性、认证性和不可抵赖性。

基础课程第七课区块链安全基础知识

一、哈希算法(Hash算法)

哈希函数(Hash),又称为散列函数。哈希函数:Hash(原始信息)=摘要信息,哈希函数能将任意长度的二进制明文串映射为较短的(一般是固定长度的)二进制串(Hash值)。

一个好的哈希算法具备以下4个特点:

1、一一对应:同样的明文输入和哈希算法,总能得到相同的摘要信息输出。

2、输入敏感:明文输入哪怕发生任何最微小的变化,新产生的摘要信息都会发生较大变化,与原来的输出差异巨大。

3、易于验证:明文输入和哈希算法都是公开的,任何人都可以自行计算,输出的哈希值是否正确。

4、不可逆:如果只有输出的哈希值,由哈希算法是绝对无法反推出明文的。

5、冲突避免:很难找到两段内容不同的明文,而它们的Hash值一致(发生碰撞)。

举例说明:

Hash(张三借给李四10万,借期6个月)=123456789012

账本上记录了123456789012这样一条记录。

可以看出哈希函数有4个作用:

简化信息

很好理解,哈希后的信息变短了。

标识信息

可以使用123456789012来标识原始信息,摘要信息也称为原始信息的id。

隐匿信息

账本是123456789012这样一条记录,原始信息被隐匿。

验证信息

假如李四在还款时欺骗说,张三只借给李四5万,双方可以用哈希取值后与之前记录的哈希值123456789012来验证原始信息

Hash(张三借给李四5万,借期6个月)=987654321098

987654321098与123456789012完全不同,则证明李四说谎了,则成功的保证了信息的不可篡改性。

常见的Hash算法包括MD4、MD5、SHA系列算法,现在主流领域使用的基本都是SHA系列算法。SHA(SecureHashAlgorithm)并非一个算法,而是一组hash算法。最初是SHA-1系列,现在主流应用的是SHA-224、SHA-256、SHA-384、SHA-512算法(通称SHA-2),最近也提出了SHA-3相关算法,如以太坊所使用的KECCAK-256就是属于这种算法。

MD5是一个非常经典的Hash算法,不过可惜的是它和SHA-1算法都已经被破解,被业内认为其安全性不足以应用于商业场景,一般推荐至少是SHA2-256或者更安全的算法。

哈希算法在区块链中得到广泛使用,例如区块中,后一个区块均会包含前一个区块的哈希值,并且以后一个区块的内容+前一个区块的哈希值共同计算后一个区块的哈希值,保证了链的连续性和不可篡改性。

二、加解密算法

加解密算法是密码学的核心技术,从设计理念上可以分为两大基础类型:对称加密算法与非对称加密算法。根据加解密过程中所使用的密钥是否相同来加以区分,两种模式适用于不同的需求,恰好形成互补关系,有时也可以组合使用,形成混合加密机制。

对称加密算法(symmetriccryptography,又称公共密钥加密,common-keycryptography),加解密的密钥都是相同的,其优势是计算效率高,加密强度高;其缺点是需要提前共享密钥,容易泄露丢失密钥。常见的算法有DES、3DES、AES等。

非对称加密算法(asymmetriccryptography,又称公钥加密,public-keycryptography),与加解密的密钥是不同的,其优势是无需提前共享密钥;其缺点在于计算效率低,只能加密篇幅较短的内容。常见的算法有RSA、SM2、ElGamal和椭圆曲线系列算法等。对称加密算法,适用于大量数据的加解密过程;不能用于签名场景:并且往往需要提前分发好密钥。非对称加密算法一般适用于签名场景或密钥协商,但是不适于大量数据的加解密。

三、信息摘要和数字签名

顾名思义,信息摘要是对信息内容进行Hash运算,获取唯一的摘要值来替代原始完整的信息内容。信息摘要是Hash算法最重要的一个用途。利用Hash函数的抗碰撞性特点,信息摘要可以解决内容未被篡改过的问题。

数字签名与在纸质合同上签名确认合同内容和证明身份类似,数字签名基于非对称加密,既可以用于证明某数字内容的完整性,同时又可以确认来源(或不可抵赖)。

我们对数字签名有两个特性要求,使其与我们对手写签名的预期一致。第一,只有你自己可以制作本人的签名,但是任何看到它的人都可以验证其有效性;第二,我们希望签名只与某一特定文件有关,而不支持其他文件。这些都可以通过我们上面的非对称加密算法来实现数字签名。

在实践中,我们一般都是对信息的哈希值进行签名,而不是对信息本身进行签名,这是由非对称加密算法的效率所决定的。相对应于区块链中,则是对哈希指针进行签名,如果用这种方式,前面的是整个结构,而非仅仅哈希指针本身。

四、零知识证明(ZeroKnowledgeproof)

零知识证明是指证明者在不向验证者提供任何额外信息的前提下,使验证者相信某个论断是正确的。

零知识证明一般满足三个条件:

1、完整性(Complteness):真实的证明可以让验证者成功验证;

2、可靠性(Soundness):虚假的证明无法让验证者通过验证;

3、零知识(Zero-Knowledge):如果得到证明,无法从证明过程中获知证明信息之外的任何信息。

五、量子密码学(Quantumcryptography)

随着量子计算和量子通信的研究受到越来越多的关注,未来量子密码学将对密码学信息安全产生巨大冲击。

量子计算的核心原理就是利用量子比特可以同时处于多个相干叠加态,理论上可以通过少量量子比特来表达大量信息,同时进行处理,大大提高计算速度。

这样的话,目前的大量加密算法,从理论上来说都是不可靠的,是可被破解的,那么使得加密算法不得不升级换代,否则就会被量子计算所攻破。

众所周知,量子计算现在还仅停留在理论阶段,距离大规模商用还有较远的距离。不过新一代的加密算法,都要考虑到这种情况存在的可能性。

有没有大佬告诉我区块链游戏的运作原理用最简洁明了的语言描述区块链游戏。

区块链游戏,主要是指Dapp中属于游戏类的区块链应用,需要和各种区块链公链有一定程度上的交互。区块链游戏从17年11月开始逐渐兴起,发展历史极为短暂,与成熟游戏相比,目前的玩法也相当简单。在业界人士看来,很多游戏甚至只是个裹着游戏外衣的资金盘。

根据Cryptogames的分类,目前上线的区块链游戏中,hotpotato、收藏交易、菠菜和ponzi是最主要的游戏玩法。数量最多的要属于hotpotato类游戏,包括近期火爆的两款游戏都是这个类型的-CryptoCelebrities(加密名人)和CryptoCountries(加密世界)。收藏交易类有35款,居第二,主要代表作为CryptoKitties(加密猫)。菠菜和ponzi类共17款,居第三,明星产品分别为EtherRoll和Etheremon。

区块链游戏所使用的主题也是五花八门,从猫、狗、龙、猪等各种动物,到人、车、国家、球队等等各种各样的题材。

区块链游戏1.0时代

时间:2017年11月到12月

主要玩法:收藏+交易

代表作:CryptoKitties、CryptoPunks

区块链技术给玩家的数字资产赋予了唯一性。这便逐渐了产生了NFT(non-fungibletokens,不可替代的令牌)概念,人们在区块链游戏中的资产唯一性和稀缺性不会随游戏本身而改变。最先应用这个概念的是LarvaLabs在17年6月推出的CryptoPunks。系统随机生成一万张朋克头像,通过智能合约放在以太坊上,免费发放给玩家后供玩家交易。

当AxiomZen工作室在NFT的基础上增加属性、繁殖和拍卖功能后,Cryptokitties爆款便诞生了。人们可以购买不同属性的小猫,与别的猫“繁衍后代“,或者将自己的猫通过荷兰式拍卖卖出。拥有稀缺独特基因的小猫被人们疯狂追捧,获得了相当高的溢价。

人们在Cryptokitties的基础上继续开发,添加了饰品和战斗功能,也增加了掘金、喂养、夺宝等玩法。

区块链游戏2.0时代

时间:2017年12月到2018年1月

主要玩法:类Ponzi

代表作:Etheremon

刚开始时,Etheremon的玩法一开始非常简单粗暴,在玩家买了某个宠物之后,后面只要有人购买相同的宠物,玩家就可以获得一小部分eth奖励。游戏团队在一周内迅速获得了2000ETH左右的利润。然后彻底改变玩法,成功转型为收藏+战斗的游戏。这种类Ponzi的玩法迅速被其他厂家所效仿,出现了以太车、ethertanks等众多模仿者。

区块链游戏3.0时代

时间:2018年1月

主要玩法:固定售价、强制涨价的hotpotato模式

代表作:CryptoCelebrities,CryptoCountries

玩家购买加密名人(中本聪,马斯克等)和加密国家(日本,美国等),由于资产的唯一性,后续玩家只能用更高的价格从资产拥有者中购买,价格强制涨价,平台赚取一部分差价。目前最高价格的国家是日本,大约700多ETH,最贵的名人是ElonMusk,”身价“大约200ETH。

区块链游戏4.0时代

时间:2018年2月

主要玩法:多种机制结合

代表作:World.Mycollect,Cryptocities

游戏中采用了多级销售和分成,玩家探索(随机性),抽奖,资源独特性等多种玩法。比如在Cryptocities中,玩家可以购买国家、大洲和世界来进行“征服”。征服了世界的玩家可以获得大洲和国家交易额的1%税收,征服大洲的玩家可以获得国家交易额1%的税收。而征服国家的玩家在未来可以获得其下属城市的交易额1%税收。玩家在探索新城市的时候,有几率探索出宝石,获得宝石即可获得ETH奖励。

同时期兴起的,还有菠菜类游戏。区块链的高透明度让它们更容易获得投资者信任。比较有名的有Etheroll和Vdice,玩法简单粗暴,玩家花费一定的ETH投注某个数字,当系统随机生成的数字小于该数字时,就可以获得收益。

除此之外,还有RPG(EtherCraft),战斗游戏(Etherbots)和二次元(以太萌王)等。

2

区块链游戏的优势和劣势

纵观这些成功的案例,我们发现区块链游戏确实有着独特的优势:

较高的信任度:通过开源合约快速建立信任,使用过程完全透明,信息完全对称。公正性:可以做到数据无法篡改、规则永远不变。资产属于玩家个人:玩家资产不会随游戏的衰落而流失。具有极强的社区属性:区块链本身具有较强的交易和社区属性。

当然,目前区块链游戏也处于萌芽时期,有着明显的缺点:

无法及时交互:区块链交易存在着不确定的等待时间和拥堵的可能,很难在玩家之间形成及时交互。发送指令费用较高:每次发送指令都需要消耗GAS,而ETH的价格仍然使得GAS费用显得比较高昂。开发环境不成熟:目前以太坊的虚拟机和编程语言solidity已经是众多公链中开发环境最为成熟的一个了。但是其和其他热门语言比起来还非常的不成熟。

3

游戏化将助推区块链落地

在传统的桌面网络游戏中,厂商不断激励新进玩家导致了通货膨胀,一个游戏账号所有资产的实际价值往往远低于玩家的投入。手游出现后,道具绑定账号,账号绑定身份证的模式很快得到了普及。这也使得一旦玩家决定离开某个游戏,就必须放弃所有在游戏中的虚拟资产。区块链技术的出现和不断成熟,将使得游戏规则去中心化制定和虚拟资产去中心化储存从技术层面变得可行。而虚拟资产上链的便捷性,也使区块链在游戏场景中更容易落地。

Cryptogames认为,区块链游戏的发展方向,或者说是经典游戏(就像篮球、足球和棋类一样,一经确定规则,便经久不衰)的发展方向,一定是“去中心化”的:

规则是由玩家协商确定玩家之间互相监督保证游戏按照规则来进行游戏中所用的所有道具都由各个玩家自己所有有人破坏规则或者玩的不爽可以直接走人游戏本身不存在一个中心化的组织者

CryptoKitties的风靡极大地推广了私人钱包,区块链游戏作为早期落地的区块链应用,迅速推动了区块链的普及。同样,利用游戏开发经验和游戏设计理念开发出

高温气冷堆核电站示范工程安全审评原则?

CCCF第7期专题邀请了相关领域的6位专家学者深入探讨图灵对密码学发展的深远影响和密码学的前沿进展,涵盖了密码设计与密码分析这两个密码学的组成部分,同时兼顾了广度与深度。各专题文章原文详见CCF数字图书馆。

关键词: 密码学 图灵 网络空间安全 信息安全

从早期作为一种实用性技术,到今天发展为一门严谨的学科,密码学的发展史汇聚了人类文明的聪明才智。围绕着如何使用密码实现安全和隐私保护与如何安全地使用密码这两个本质问题,密码的设计与分析相互依存,相互促进,处在不断的博弈中,这使得密码的研究得到了持续的发展。

在发展过程中,计算机科学之父艾伦·图灵(Alan M. Turing)做出了多方面本质的贡献,对密码学的成熟产生了深远的影响。首先,在密码安全定义建模方面,图灵的可计算性理论及其发明的(通用)图灵机起着重要的作用。例如,我们知道在现代密码中,设计者首先需要证明其提出的密码算法或者协议可以抵御所有的已知和未知的攻击。然而,有很多密码算法或者协议无法证明自己是安全的,但也无法找到安全漏洞。在这种情况下,是设计者没有找到正确的证明方法呢?还是这个密码算法或者协议本身就不可能被证明呢?图灵奠基的可证明性理论对这些问题给出了答案,那就是很多我们无法证实或者证伪的密码算法或者协议,并不是由于设计者缺少正确的证明方法,而是这个密码算法或者协议本身就不可能在有限步骤内被证明。这就要求设计者不断地对其密码算法或者协议进行修改,使得其能被证明。此外,图灵发明的(通用)图灵机也被广泛应用于密码算法或协议敌手模型中对敌手的建模,使对敌手的运算时间约束可以转化成对于算法的计算步骤限制。目前被密码学界广泛接纳的通用可组合安全模型(universal composability)就是通过多项式时间通用图灵机来模拟敌手的。

本期专题邀请了相关领域的专家学者深入探讨图灵对密码学发展的深远影响和密码学的前沿进展,共组织了六篇文章,涵盖了密码设计与密码分析这两个密码学的组成部分,同时兼顾了广度与深度。

第一篇文章是由英国兰卡斯特大学助理教授张秉晟和浙江大学研究员秦湛联合撰写的《通用图灵机及其对现代密码安全建模的影响》,以(通用)图灵机的计算理论为切入点,深入浅出地分析(通用)图灵机对密码学基本算法工具的安全定义和对密码协议的安全性建模产生的深远影响。作者介绍了密码学中的加密算法是如何从AES时代逐渐演化到现在的可证明安全定义以及(通用)图灵机在其中起到的作用。另外,作者还梳理了密码协议,例如安全多方计算的安全性建模和定义是如何通过几十年的研究探讨演化到如今的通用可组合安全模型,重点解析了交互式图灵机对整个通用可组合安全模型构架的奠基作用。

第二篇文章是由山东大学教授王美琴等撰写的《从图灵破解Enigma到现代密码分析》,介绍了Enigma密码机的工作原理和图灵对Engima密码机的破解,并且解析了Enigma密码机的破解对现代密码分析的影响。作者还以针对哈希函数的破解实例来呈现现代密码分析对安全密码算法设计的重要性。

第三篇文章是由中国科学院信息工程研究所研究员胡磊和副研究员宋凌撰写的《密码杂凑函数的回顾与进展》,介绍了用于实现密码学研究中的完整性和认证性的一类关键密码学函数——密码杂凑函数(又称哈希函数、散列函数等)。作者阐述了密码杂凑函数的性质及其具体应用,梳理了密码杂凑函数的发展脉络,总结了密码分析对密码杂凑函数标准化的影响,并具体介绍美国国家标准与技术研究院(NIST)杂凑函数标准SHA-3及其最新分析进展。

第四篇文章是由香港城市大学副教授王聪和武汉大学教授王骞等联合撰写的《安全多方计算理论与实践》,从理论和实践的双重角度对安全多方计算进行深入的解析。作者从生动的现实问题入手,介绍了安全多方计算的系统模型、安全模型以及理论上的普适性解决方案。同时,文章还梳理了安全多方计算在实际应用中的前沿进展,总结了当前安全多方计算应用的现状,指出了未来安全多方计算的研究方向。

第五篇文章是由美国新泽西理工学院助理教授唐强和哥伦比亚大学教授慕梯·杨(Moti Yung)联合撰写的《抗后门的新一代密码学Cliptography研究进展》,对密码学的通用后门攻击Kleptography进行了系统的总结,并且介绍了抗后门密码学Cliptography的前沿进展。作者先阐述了密码学后门背后的科学原理,回答了如何在设计之初就考虑到这种可能的后门攻击问题,进而介绍了抗后门密码学Cliptography如何弥合这个密码学理论设计与实际实现之间的鸿沟,并对新一代密码学理论基础和密码标准提出新的建议。

第六篇文章是由浙江大学副教授张帆、上海交通大学教授谷大武等撰写的《人工智能之于旁路分析》,介绍了人工智能技术在密码旁路分析领域的研究现状,梳理了机器学习算法在旁路分析领域的发展过程,剖析了人工智能技术在密码旁路分析领域取得成果的原因,并指出了将人工智能技术与旁路分析领域结合的研究方向。

希望本专题能鼓舞更多的学者和安全从业人员参与到网络空间安全和信息安全的研究中,设计与分析新密码算法和协议,开拓新的研究方向和领域。

作者介绍

任 奎

CCF专业会员。浙江大学网络空间安全研究中心主任,国家千人计划特聘教授。主要研究方向为数据安全,云安全,人工智能安全,物联网安全等。kuiren@zju.edu.cn

CCF推荐

精品文章

点击 “阅读原文” ,前往CCF数图相关栏目。

1.前言高温气冷堆核电站示范工程(HTR-PM)是我国自主开发的,已列入国家中长期科技发展规划重大专项的先进核电厂项目。类似HTR-PM这类先进核电厂的一个重要特征是利用固有安全特性和非能动安全系统,以期大大提高核电厂的安全水平。与传统的核电厂一样,保证HTR-PM安全的根本也是保证控制反应性、排出堆芯热量、包容放射性物质并控制运行排放以及限制事故释放三项基本安全功能。在实现这三项基本安全功能的方式上,HTR-PM具有以下特点:(1)HTR-PM具有良好的负反馈特性,在正常运行工况下燃料元件的温度与其允许的温度限值之间有相当大的裕度,在某些瞬态或事故发生而导致不期望的功率上升时,仅通过燃料温升引入的较大负反应性就可以实现自动停堆或者将堆芯功率降低到一个很低的水平;(2)HTR-PM具有较低的堆芯功率密度,堆芯石墨构件具有较大的热容,采用可以耐受较高温度的包覆颗粒燃料元件,这导致HTR-PM具有比较平缓的堆芯瞬态特征。同时,采用有利的堆芯几何形状设计,将为非能动堆芯余热排出创造有利条件;(3)作为最后一道实体屏障,传统轻水堆核电厂的安全壳在限制事故后果和包容放射性物质方面起着至关重要的作用,而HTR-PM主要依赖具有高度可靠性的包覆颗粒燃料元件实现放射性物质的包容功能。目前核电厂的设计主要依据确定论的安全要求,它与具体的堆型和系统设计密切相关。对于传统的压水堆和沸水堆核电厂,这套确定论的安全要求比较完备,其中的一些重要原则仍可作为HTR-PM的参考。但是许多国家和有关的国际组织也认识到,已有的安全要求对HTR-PM这类先进核电厂并不完全适用,而针对这种类型核电厂,安全要求的建立仍不完备。美国核管会(NRC)正在为先进堆制定一套许可证管理的框架文件,以明确高层管理准则和一些重要安全问题的要求。国际原子能机构(IAEA)在2000年颁布的新版核动力厂安全标准No.NS-R-1“SAFETY OF NUCLEAR POWER PLANTS: DESIGN”中提到,该标准对于其它类型的反应堆,包括未来的革新型系统,一些要求可能并不适用,或者在解释它们时需要一些判断。国家核安全局充分认识到了上述问题,为了HTR-PM安全审评的需要,在原则上遵守我国现行有效的核安全法规和标准的基础上,制定了本审评原则,以明确国家核安全局对一些重要问题的立场。本审评原则的建立参考了国内外高温气冷堆(包括HTR-10)多年发展所形成的一些经验以及近些年的最新研究成果。应该充分认识到的是,HTR-PM安全要求的建立,必须经过一个实践,认识,再实践,再认识的反复过程。对本审评原则的应用,也应抱有这样的态度。2.安全目标(1)定性安全目标HTR-PM的安全总目标是:在HTR-PM中建立并保持对放射性危害的有效防御,以保护人员、社会和环境免受危害。这个安全总目标由辐射防护目标和技术安全目标所支持。辐射防护目标:保证在所有运行状态下HTR-PM内的辐射照射或由于HTR-PM任何计划排放放射性物质引起的辐射照射保持低于规定限值并且合理可行尽量低,保证减轻任何事故的放射性后果。技术安全目标:采取一切合理可行的措施预防HTR-PM的事故,并且一旦发生事故时减轻其后果;对于在HTR-PM设计时考虑过的所有可能事故,包括概率很低的事故,要以高可信度保证任何放射性后果尽可能小且低于规定限值;保证实际地排除有严重放射性后果的事故发生。在上述安全目标基础上,HTR-PM在设计上所要达到的一个目标是:“尽管管理当局仍然可以要求,一个基本目标是在技术上对外部干预措施的需求可以是有限的,甚至是可免除的”(同IAEA在No.NS-R-1“SAFETY OF NUCLEAR POWER PLANTS: DESIGN”中表述的目标)。(2)概率安全目标核安全导则HAD102/17《核动力厂安全评价与验证》中推荐了对新的核动力厂的概率安全目标:堆芯损坏频率小于10-5/堆?年,放射性物质大量释放频率小于10-6/堆?年。针对HTR-PM的特点,为其推荐的概率安全目标是:采用概率安全分析,所有导致场外(包括厂址边界处)个人有效剂量超过50mSv的超设计基准事故序列累计频率应小于10-6/堆?年。3.纵深防御概念核安全法规《核动力厂设计安全规定》(HAF102)确定了纵深防御概念,即保证安全有关的全部活动,包括与组织、人员行为或设计有关的方面,均置于重叠措施的防御之下,即使有一种故障发生,它将由适当的措施探测、补偿或纠正,以便对由厂内设备故障或人员活动及厂外事件等引起的各种瞬变、预计运行事件及事故提供多层次的保护。纵深防御概念应用于核动力厂的设计,提供一系列多层次的防御(固有特性、设备及规程),用以防止事故并在未能防止事故时保证提供适当的保护。(1)第一层次防御的目的是防止偏离正常运行及防止系统失效。这一层次要求:按照恰当的质量水平和工程实践,例如多重性、独立性及多样性的应用,正确并保守地设计、建造、维修和运行核动力厂。为此,应十分注意选择恰当的设计规范和材料,并控制部件的制造和核动力厂的施工。能有利于减少内部灾害的可能、减轻特定假设始发事件的后果或减少事故序列之后可能的释放源项的设计措施均在这一层次的防御中起作用。还应重视涉及设计、制造、建造、在役检查、维修和试验的过程,以及进行这些活动时良好的可达性、核动力厂的运行方式和运行经验的利用等方面。整个过程是以确定核动力厂运行和维修要求的详细分析为基础。(2)第二层次防御的目的是检测和纠正偏离正常运行状态,以防止预计运行事件升级为事故工况。尽管注意预防,核动力厂在其寿期内仍然可能发生某些假设始发事件。这一层次要求设置在安全分析中确定的专用系统,并制定运行规程以防止或尽量减小这些假设始发事件所造成的损害。(3)设置第三层次防御是基于以下假定:尽管极少可能,某些预计运行事件或假设始发事件的升级仍有可能未被前一层次防御所制止,从而演变成一种较严重的事件。这些不大可能的事件在核动力厂设计基准中是可预计的,并且必须通过固有安全特性、故障安全设计、附加的设备和规程来控制这些事件的后果,使核动力厂在这些事件后达到稳定的、可接受的状态。这就要求设置的专设安全设施能够将核动力厂首先引导到安全可控状态,并最终引导到安全停堆状态,并且至少维持一道包容放射性物质的屏障。(4)第四层次防御的目的是针对设计基准可能已被超过的超设计基准事故,并保证放射性释放保持在尽实际可能的低。这一层次最重要的目的是保护包容功能。除了事故管理规程之外,这可以由防止事故进展的补充措施与规程,以及减轻选定的超设计基准事故后果的措施来达到。由包容提供的保护可用最佳估算方法来验证。(5)第五层次,即最后层次的防御,其目的是减轻可能由事故工况引起潜在的放射性物质释放造成的放射性后果。这方面要求有适当装备的应急控制中心及厂内、厂外应急响应计划。对于HTR-PM来说,总体上仍维持上述五个纵深防御的层次,但考虑到其堆型的特点,在纵深防御层次设置的重点上与传统的压水堆核电厂和沸水堆核电厂可能会有所不同,例如,保证第一道放射性包容屏障,即包覆颗粒燃料元件的完整性将会起更加重要的作用。另外HTR-PM较长的宽容时间也可视为纵深防御的一个重要手段。HTR-PM纵深防御各层次设置的合理性应该通过完整的安全评价加以证明。4.总的设计基准(1)电厂状态划分HTR-PM的电厂状态划分为四类,除正常运行工况外,还包括预计运行事件、设计基准事故和超设计基准事故。这些电厂状态的划分主要参照各类事件发生的频率范围,并参考已有的和其它堆型的经验来确定。预计运行事件、设计基准事故频率范围划分以假设始发事件的发生频率为依据;超设计基准事故划分以事故序列的频率,并结合确定论和工程判断为依据。1)预计运行事件在该模块反应堆的寿期中有可能发生的,并且可能影响HTR-PM安全的一类事件,该类事件的下界定为10-2/堆?年。预计运行事件用于HTR-PM正常运行工况下的环境评价,剂量限值是:向环境释放的放射性物质对公众个人(成人)造成的有效剂量应小于0.25mSv/电厂?年。这些事件的典型例子有:? 一根反射层控制棒在功率运行工况下失控提升;? 一回路主氦风机误加速;? 失去厂外电源;? 丧失正常给水流量;? 汽轮机外负荷丧失,等等。2)设计基准事故HTR-PM设计基准事故划分为两类:稀有事故和极限事故。对于稀有事故,预计在一座模块反应堆的整个寿期中不会发生,但在可能建造的这类堆型的总体中(假设数百个模块)有可能会发生,其频率范围为10-2-10-4/堆?年。这些事故的典型例子有:? 给水管道小破口;? 反应堆冷却剂一根仪表测量管(≤DN10mm)断裂;? 蒸汽发生器一根换热管双端断裂;? 反应堆辅助系统厂房内氦净化系统的一根管道破裂;? 放射性废液贮存罐的泄漏,等等。对于极限事故,预计在这类堆型总体的寿期中不会发生,但出于安全的考虑,仍将它们归于设计基准事故之中,其频率范围为10-4-10-6?/堆?年。这些事故的典型例子有:? 一根控制棒在功率运行下失控提升同时发生运行基准地震;? 主蒸汽管道破裂;? 给水管道大破口;? 与压力容器相连的一根大管道(≤DN65mm)断裂;? 各种未能紧急停堆的预计瞬态(ATWS),等等。对于HTR-PM的稀有事故和极限事故,其个人剂量限值分别确定为:在每发生一次稀有事故时,公众个人(成人)可能受到的有效剂量应控制在5mSv以下,甲状腺当量剂量应控制在50mSv以下;在每发生一次极限事故时,公众个人(成人)可能受到的有效剂量应控制在10mSv以下,甲状腺当量剂量应控制在100mSv以下。正常运行、预计运行事件、设计基准事故(含稀有事故和极限事故)的电厂状态分类与美国ASME规范中的工况分类(A、B、C、D类工况)相对应。3)超设计基准事故这是一类预期在可能建造的HTR-PM型核电厂(假设数百个反应堆模块)的总体寿期中也不会发生,并且具有更低频率水平的工况。但为了确保公众的安全与健康,仍需考虑这类事件,并从中选取超设计基准事故的重要事件序列,以在确定应急源项和应急计划时加以考虑,评价需要采取什么样的应急措施。通过概率论、确定论和工程判断相结合的方法,可以确定在HTR-PM设计中需要加以考虑的超设计基准事故的重要事件序列,通过必要的设计修改或规程修改,考虑在超过其原来预定功能和预计运行状态下使用某些系统(安全级和非安全级系统)及使用附加的临时系统,以及制定事故管理规程等措施来对付这些重要的事件序列。对于超设计基准事故,可采用基于现实的或最佳估算的假设、方法和分析准则。根据推荐的HTR-PM的概率安全目标,采用事故序列分析,场外(包括厂址边界处)个人(成人)有效剂量超过50mSv的所有超设计基准事故序列累计频率应小于10-6/堆?年。(2)工业标准和规范HTR-PM遵守我国已颁布的,并且适用的国家标准。考虑到我国在核安全相关领域的工业标准和规范尚存在较大欠缺,在HTR-PM的设计中还将参照下述国际或其它国家的标准和规范:1)安全1、2、3级部件的设计分别参照美国ASME-Ⅲ-1-NB、NC、ND标准,安全级部件支承件和金属堆内构件分别参照ASME-Ⅲ-1-NF和NG分册;2)陶瓷堆内构件设计参照:德国KTA 3232《反应堆压力容器内的陶瓷堆内构件》(1992年);3)仪表控制系统设计参照:美国IEEE标准和国际电工委员会IEC标准;4)电气系统设计参照: 美国IEEE标准;5)球床堆芯的热工流体力学设计参照:德国KTA3102《高温气冷堆堆芯设计》(1978年);6)消防设计参考:法国RCC-I《压水堆核电站防火设计和建造准则》(1997年)。其它在设计过程中可能涉及到的标准和规范,将在征得国家核安全局同意的条件下使用或参照。5.安全壳对于传统的压水堆核电厂和沸水堆核电厂而言,由于其所采用的燃料元件形式,以及具有高的堆芯功率密度及堆芯余热,因而对反应堆冷却剂流失事故特别敏感。为了在反应堆冷却剂流失事故时维持燃料元件的冷却,设置了复杂的应急堆芯冷却系统,这样,安全壳不仅仅起到放射性向环境释放的最后一道屏障作用,而且对事故后维持必要的冷却剂总量,保证堆芯的长期冷却也起着至关重要的作用。HTR-PM对放射性物质的包容主要依赖具有高可靠性的包覆颗粒燃料元件。由于包覆颗粒燃料元件可以承受较高的温度,并且HTR-PM具有较低的堆芯功率密度,在事故后可通过热辐射和热传导等自然机制将堆芯余热传递到排热系统,然后采用非能动系统传递到最终热阱,这样,HTR-PM对反应堆冷却剂的流失并不敏感。即使对于所考虑的最严重事故工况,HTR-PM的放射性释放都是有限的,并且具有很大的延迟,这种延迟为采取事故管理措施提供了较长的宽容时间。上述特性预示了HTR-PM可采用在原理上与传统的压水堆核电厂和沸水堆核电厂有很大区别的安全壳(国际上称作VLPC,通风式低耐压型安全壳,或称作包容壳)。但是采用这样的包容壳概念的合理性必须通过完整的安全评价给予证明,即必须满足为HTR-PM所确定的安全目标,并且不降低总的防御水平,包括对外部事件的防御。6.事故源项对传统的压水堆核电厂和沸水堆核电厂,美国早期的10CFR100和NRC近期的RG1.183等已经为其确定了假想的事故源项,但对于HTR-PM这类核电厂,国内外尚缺乏相应的法规或标准。HTR-PM的设计理念是依靠固有安全特性和高可靠的包覆颗粒燃料元件,将包含在燃料颗粒中的大量放射性释放的可能性“实际地排除”,因而在确定其事故源项时必须考虑到其设计理念和设计特点。参考国际上的普遍经验,HTR-PM核电站的事故源项可采用由特定事故序列分析而导致的放射性物质的释放来确定。必须对HTR-PM核电站的设计基准事故和超设计基准事故的重要事件序列进行分析,以确定放射性物质的释放,并从中选取保守的和包络性的作为厂址选择和应急计划的源项。在分析过程中,应仔细分析模型的合理性,当对放射性物质释放机制的了解还不够清晰,或者相应的实验数据还不够充分时,则必须考虑适当的保守性。7.应急计划对于先进核电厂而言,由于在安全水平上得到了很大的提高,预示了场外应急计划简化的可能。前面已经提到了IAEA在No.NS-R-1“SAFETY OF NUCLEAR POWER PLANTS: DESIGN”中的观点:“尽管管理当局仍然可以要求,一个基本目标是在技术上对外部干预措施的需求可以是有限的,甚至是可免除的”。法国和德国的核安全当局在发展针对下一代压水堆的安全要求时,也已经采纳了场外应急最小化的理念。如法国的IPSN和德国的GRS在“IPSN-GRS为发展下一代压水堆技术导则的建议”中提出“对无堆芯熔化的事故,事故电厂附近的居民不需要保护措施(不需撤离与隐蔽)。对低压熔堆事故,无论从地域上或时间上均只需采取很有限的保护措施”,以及“低压熔堆事故必须予以'对付',使得与它相关的最大假想释放,在范围与时间上,只需要非常有限的保护措施。这是指无需永久避迁;对紧邻电厂地区以外的区域无需紧急撤离,只需有限的隐蔽;无长期食物消费的限制”。对于HTR-PM,其制定的安全目标高于美国在“先进轻水堆用户要求文件”(Advanced Light Water Reactor Utility Requirement Documents,简称URD)和欧洲在“轻水堆核电厂欧洲用户要求文件”(European Utility Requirements for LWR Nuclear Power Plants,简称EUR)中对第三代轻水堆制定的安全目标,即对于所有设计基准事故(频率低至10-6/堆?年),场外个人(成人)可能受到的有效剂量和甲状腺当量剂量分别低于隐蔽和碘防护的干预水平,而对所有超设计基准事故,其概率安全目标是场外(包括厂址边界处)个人(成人)有效剂量高于50mSv的累计频率低于 10-6/堆?年。因此,在技术上为实施场外应急简化创造了条件。8.有关概率安全分析的应用确定论安全方法在保证核电厂安全方面的重要作用已为大量实践所证明,但如前所述,目前对于传统的压水堆核电厂、沸水堆核电厂等确定论方法的发展已比较完备,而对于其它类型的反应堆和一些革新设计的反应堆,尚未建立起比较完备的确定论安全要求。在认识到确定论安全方法在保证核电厂安全方面所起到的重要作用的同时,也必须认识到许多确定论的安全要求是依据早期有限的试验、知识和经验所建立的,也存在一些不足之处,如与具体堆型和具体系统密切相关的“处方”式安全要求、对付多重事件和多重故障的不足、在安全分级和多重性要求等方面的处理过于简单化和不平衡、以及无法定量地对核电厂的安全水平作出评估等。近些年来概率安全分析方法已得到了极大的发展,概率安全分析方法在加深对核安全问题的深入认识方面、在识别核电厂设计的薄弱环节以改进电厂安全方面、在平衡核电厂的设计以优化核安全资源的利用方面,以及在定量地评估核电厂的安全水平等方面都可以起到非常重要的作用。正因为如此,在一些核电发达国家,建立RISK-INFORMED AND PERFOMANCE BASED的安全要求是核安全监管当局目前正在大力推进的一项工作,而这种安全途径对于先进核电厂则显得格外重要。对于HTR-PM,概率安全分析可以支持如下的工作:1)确认满足了HTR-PM的安全目标,包括概率安全目标;2)支持HTR-PM电厂状态的划分;3)支持对HTR-PM设计中所要考虑的超设计基准事故重要事件序列的选取;4)支持事故源项的选取和确定;5)支持HTR-PM纵深防御层次的设置;6)支持HTR-PM运行技术规格书的制定;7)支持某些具体安全要求的建立或调整。在应用概率安全分析方法时,也要认识到概率安全分析方法所存在的某些局限性,因而必须注意下述问题的处理:1)确保概率安全分析工作达到与其所支持工作相称的质量水平;2)合理地处理概率安全分析结果的不确定性;3)进行必要的敏感性分析,以保证不存在“陡边”效应;4)由于确定论安全分析的保守要求确实为某些未知因素带来了一定的保守裕度,因而在概率安全分析工作中使用保守模型还是现实模型时需要根据具体情况仔细斟酌。9.安全分析软件的验证一般来说,在HTR-PM设计和安全评价过程中所使用的安全分析软件,包括其适用范围,应得到鉴定。但考虑到目前国际上高温气冷反应堆技术发展的现状和HTR-PM所具有的示范堆性质,在HTR-PM设计和安全评价过程中所使用的某些安全分析软件可能尚无法得到鉴定,或者使用范围和鉴定范围有所偏差。在这种情况下,应尽实际可能地对这些安全分析软件进行验证,包括必要的试验验证、不同程序的对比验证,以及充分利用HTR-10的相关试验和运行数据的验证等。同时,在HTR-PM的设计中也应适当地考虑为将来的安全分析软件验证创造条件。

关于“区块链如何零信任(区块链去信任化什么意思)”这个话题的介绍,今天小编就给大家分享完了,如果对你有所帮助请保持对本站的关注!

本文来自作者[怀刃]投稿,不代表乐毅号立场,如若转载,请注明出处:https://www.leheathy.com/jingyan/202508-3215.html

(1)
怀刃的头像怀刃签约作者

文章推荐

发表回复

作者才能评论

评论列表(3条)

  • 怀刃的头像
    怀刃 2025年08月06日

    我是乐毅号的签约作者“怀刃”

  • 怀刃
    怀刃 2025年08月06日

    本文概览:网上有关“区块链如何零信任(区块链去信任化什么意思)”话题很是火热,小编也是针对区块链如何零信任(区块链去信任化什么意思)寻找了一些与之相关的一些信息进行分析,如果能碰巧解决你...

  • 怀刃
    用户080608 2025年08月06日

    文章不错《区块链如何零信任(区块链去信任化什么意思)》内容很有帮助