什么叫光缆损耗

网上有关“什么叫光缆损耗”话题很是火热,小编也是针对什么叫光缆损耗寻找了一些与之相关的一些信息进行分析,如果能碰巧解决你现在面临的问题,希望能够帮助到您。

光缆的损耗也叫衰减,它分为:

一、 光纤的吸收损耗

这是由于光纤材料和杂质对光能的吸收而引起的,它们把光能以热能的形式消耗于光纤中,是光纤损耗中重要的损耗,吸收损耗包括以下几种:

1.物质本征吸收损耗 这是由于物质固有的吸收引起的损耗。它有两个频带,一个在近红外的8~12μm区域里,这个波段的本征吸收是由于振动。另一个物质固有吸收带在紫外波段,吸收很强时,它的尾巴会拖到0.7~1.1μm波段里去。

2.掺杂剂和杂质离子引起的吸收损耗 光纤材料中含有跃迁金属如铁、铜、铬等,它们有各自的吸收峰和吸收带并随它们价态不同而不同。由跃迁金属离子吸收引起的光纤损耗取决于它们的浓度。另外,OH-存在也产生吸收损耗,OH-的基本吸收极峰在2.7μm附近,吸收带在0.5~1.0μm范围。对于纯石英光纤,杂质引起的损耗影响可以不考虑。

3.原子缺陷吸收损耗 光纤材料由于受热或强烈的辐射,它会受激而产生原子的缺陷,造成对光的吸收,产生损耗,但一般情况下这种影响很小。

二、光纤的散射损耗

光纤内部的散射,会减小传输的功率,产生损耗。散射中最重要的是瑞利散射,它是由光纤材料内部的密度和成份变化而引起的。

光纤材料在加热过程中,由于热骚动,使原子得到的压缩性不均匀,使物质的密度不均匀,进而使折射率不均匀。这种不均匀在冷却过程中被固定下来,它的尺寸比光波波长要小。光在传输时遇到这些比光波波长小,带有随机起伏的不均匀物质时,改变了传输方向,产生散射,引起损耗。另外,光纤中含有的氧化物浓度不均匀以及掺杂不均匀也会引起散射,产生损耗。

三、波导散射损耗

这是由于交界面随机的畸变或粗糙所产生的散射,实际上它是由表面畸变或粗糙所引起的模式转换或模式耦合。一种模式由于交界面的起伏,会产生其他传输模式和辐射模式。由于在光纤中传输的各种模式衰减不同,在长距离的模式变换过程中,衰减小的模式变成衰减大的模式,连续的变换和反变换后,虽然各模式的损失会平衡起来,但模式总体产生额外的损耗,即由于模式的转换产生了附加损耗,这种附加的损耗就是波导散射损耗。要降低这种损耗,就要提高光纤制造工艺。对于拉得好或质量高的光纤,基本上可以忽略这种损耗。

四、光纤弯曲产生的辐射损耗

光纤是柔软的,可以弯曲,可是弯曲到一定程度后,光纤虽然可以导光,但会使光的传输途径改变。由传输模转换为辐射模,使一部分光能渗透到包层中或穿过包层成为辐射模向外泄漏损失掉,从而产生损耗。当弯曲半径大于5~10cm时,由弯曲造成的损耗可以忽略。

五、光纤的连接损耗

包括:接续损耗、接头损耗等!

希望可以帮到你!

光纤损耗的光纤损耗

光纤的传输损耗特性是决定光网络传输距离、传输稳定性和可靠性的最重要因素之一。光纤传输损耗的产生原因是多方面的,在光纤通信网络的建设和维护中,最值得关注的是光纤使用中引起传输损耗的原因以及如何减少这些损耗。光纤使用中引起的传输损耗主要有接续损耗(光纤的固有损耗、熔接损耗和活动接头损耗)和非接续损耗(弯曲损耗和其它施工因素和应用环境所造成的损耗)两类。

1、接续损耗及其解决方案

1.1接续损耗

光纤的接续损耗主要包括:光纤本征因素造成的固有损耗和非本征因素造成的熔接损耗及活动接头损耗三种。

(1) 光纤固有损耗 主要源于光纤模场直径不一致;光纤芯径失配;纤芯截面不圆;纤芯与包层同心度不佳四点;其中影响最大的是模场直径不一致。

(2)熔接损耗 非本征因素的熔接损耗主要由轴向错位;轴心(折角)倾斜;端面分离(间隙);光纤端面不完整;折射率差;光纤端面不清洁以及接续人员操作水平、操作步骤、熔接机电极清洁程度、熔接参数设置、工作环境清洁程度等其他因素造成。

(3)活动接头损耗 非本征因素的活动接头损耗主要由活动连接器质量差、接触不良、不清洁以及与熔接损耗相同的一些因素(如轴向错位、端面间隙、折角、折射率差等)造成。

1.2解决接续损耗的方案

(1)工程设计、施工和维护工作中应选用特性一致的优质光纤 一条线路上尽量采用同一批次的优质名牌裸纤,以求光纤的特性尽量匹配,使模场直径对光纤熔接损耗的影响降到最低程度。

(2)光缆施工时应严格按规程和要求进行

配盘时尽量做到整盘配置(单盘≥500米),以尽量减少接头数量。敷设时严格按缆盘编号和端别顺序布放,使损耗值达到最小。

(3)挑选经验丰富训练有素的接续人员进行接续和测试

接续人员的水平直接影响接续损耗的大小,接续人员应严格按照光纤熔接工艺流程进行接续,严格控制接头损耗,熔接过程中时刻使用光域反射仪(OTDR )进行监测(接续损耗≤0.08dB/个),不符合要求的应重新熔接。使用光时域反射仪(OTDR )时,应从两个方向测量接头的损耗,并求出这两个结果的平均值,消除单向OTDR 测量的人为因素误差。

(4)保证接续环境符合要求 严禁在多尘及潮湿的环境中露天操作,光缆接续部位及工具、材料应保持清洁,不得让光纤接头受潮,准备切割的光纤必须清洁,不得有污物。切割后光纤不得在空气中暴露时间过长尤其是在多尘潮湿的环境中。接续环境温度过低时,应采取必要的升温措施。

(5)制备完善的光纤端面

光纤端面的制备是光纤接续最为关键的工序。光纤端面的完善与否是决定光纤接续损耗的重要原因之一。优质的端面应平整,无毛刺、无缺损,且与轴线垂直,光纤端面的轴线倾角应小于0.3度,呈现一个光滑平整的镜面,且保持清洁,避免灰尘污染。应选用优质的切割刀,并正确使用切割刀切割光纤。裸纤的清洁、切割和熔接应紧密衔接,不可间隔过长。移动光纤时要轻拿轻放,防止与其他物件擦碰而损伤光纤端面。

(6)正确使用熔接机

正确使用熔接机是降低光纤接续损耗的重要保证和关键环节。

①应严格按照熔接机的操作说明和操作流程,正确操作熔接机。

②合理放置光纤,将光纤放置到熔接机的V 型槽中时,动作要轻巧。这是因为对纤芯直径为10 nm的单模光纤而言,若要熔接损耗小于0.1dB ,则光纤轴线的径向偏移要小于0.8nm 。

③根据光纤类型正确合理地设置熔接参数(预放电电流、时间及主放电电流、主放电时间等)。

④在使用中和使用后应及时去除熔接机中的灰尘(特别是夹具、各镜面和v型槽内的粉尘和光纤碎末)。

⑤熔接机电极的使用寿命一般约2000次,使用时间较长后电极会被氧化,导致放电电流偏大而使熔接损耗值增加。此时可拆下电极,用蘸酒精的医用脱脂棉轻轻擦拭后再装到熔接机上,并放电清洗一次。若多次清洗后放电电流仍偏大,则须重新更换电极。

(7)尽量选用优质合格的活动连接器,保证连接器性能指标符合相关规定活动接头的插入损耗应控制在0.3 dB/个以下(甚至更低),附加损耗不大于0.2 dB/个

(8)活动接头应接插良好、耦合紧密,防止漏光现象

(9)保证活动连接器清洁

施工、维护中应注意清洗插头和适配器(法兰盘)并保证机房和设备环境的清洁,严防插头和适配器(法兰盘)有污物和灰尘,尽量减少散射损耗。

2、非接续损耗及其解决方案

非接续损耗

光纤使用中引起的非接续损耗主要有弯曲损耗和其它施工因素及应用环境造成的损耗。

(1)弯曲造成的辐射损耗 当光纤受到很大的弯折,弯曲半径与其纤芯直径具有可比性时,它的传输特性会发生变化。大量的传导模被转化成辐射模,不再继续传输,而是进入包层被涂覆层或包层吸收,从而引起光纤的附加损耗。光纤的弯曲损耗有宏弯曲损耗和微弯曲损耗两种类型。

①宏弯损耗 光纤的曲率半径比光纤直径大的多的弯曲(宏弯)引起的附加损耗,主要原因有:路由转弯和敷设中的弯曲;光纤光缆的各种预留造成的弯曲(预留圈、各种拿弯、自然弯曲);接头盒中光纤的盘留、机房及设备内尾纤的盘绕等。

②微弯损耗 光纤轴产生μm级的弯曲(微弯)引起的附加损耗,主要原因有:光纤成缆时,支承表面微小的不规则引起各部分应力不均匀而形成的随机性微弯;纤芯与包层的分界面不光滑形成的微弯;光缆敷设时,各处张力不均匀而形成的微弯;光纤受到的侧压力不均匀而形成的微弯;光纤遇到温度变化,因热胀冷缩形成的微弯。

(2)其它施工因素和应用环境造成的损耗 ①不规范的光缆上架引起的损耗。层绞式松套结构光缆容易产生此类损耗,原因在于,其一是光缆上架处多根松套管相互扭绞;其二是使用扎带将松套管绑扎到接头盒的容纤盘卡口时,使松套管出现急弯;其三是光缆上架时金属加强构件与光纤松套管出现上下错位。这些因素会引起损耗增大。

②热缩不良的热熔保护引起的损耗。原因主要有,其一是热熔保护管自身的质量问题,热熔后出现扭曲,产生气泡;其二是熔接机的加热器加热时,加热参数设置不当,造成热熔保护管变形或产生气泡;其三是热缩管不干净、有灰尘或沙砾,热熔时对接续点有损伤,引起损耗增大。

③直埋光缆不规范施工引起的损耗。原因在于,其一是光缆埋深不够,受到载重物体碾压后受损;其二是光缆路由选择不当,因环境和地形变化使光缆受到超出其容许负荷范围的外力;其三是光缆沟底不平,光缆出现拱起、挂起现象,回填后有残余应力;其四是其它原因造成光缆外护层受损伤而进水,造成氢损。

④架空光缆不规范施工引起的损耗。原因主要有,其一是在光缆敷设施工中,光缆打小圈、弯折、扭曲及打背扣,牵引时猛拉、出现浪涌,瞬间最大牵引力过大;其二是光缆挂钩使用不当,卡挂方向不一致出现蛇行弯,间隔过于稀疏,光缆因垂度过大而受力;其三是盘留于杆上的光缆未固定牢固,光缆受到长期外力和短期冲击力而遭到损伤;其四是光缆布防太紧,没考虑光缆的自然伸长率;其五是其它原因造成光缆外护层受损伤而进水,造成氢损。

⑤管道光缆不规范施工引起的损耗。原因在于,其一是光缆采用网套法布防时,牵引速度控制不好,光缆出现打背扣、浪涌;其二是穿放光缆时,没有布防塑料子管,光缆被擦伤;其三是其它原因造成光缆外护层受损伤而进水,造成氢损。

⑥机房、设备内尾纤和光纤跳线绑扎、盘绕不规范,出现交叉缠绕等现象造成损耗。

⑦光缆接头盒质量不良,接头盒封装、安装不规范,因外界作用造成接头盒受到损伤等,造成进水而出现氢损。

⑧光缆在架设过程中的拉伸变形,接续盒中夹固光缆压力太大,容纤盘中热熔管卡压过紧,容纤盘中光纤盘绕不规范等引起的损耗。

2.2解决非接续损耗的方案

(1)工程查勘设计、施工中,应选择最佳路由和线路敷设方式。

(2)组建、选择一支高素质的施工队伍,保证施工质量,这一点至关重要,任何施工中的疏忽都有可能造成光纤损耗增大。

(3)设计、施工、维护中,积极采取切实有效的光缆线路 “四防”措施(防雷、防电、防蚀、防机械损伤),加强防护工作。

(4)使用支架托起缆盘布放光缆,不要把缆盘放倒后采用类似从线轴上放的办法布放光缆,不要让光缆受到扭力。光缆布放时,应统一指挥,加强联络,要采用科学合理的牵引方法。布防速度不应过快;连续布防长度不宜过长,必要时应采用倒“8”字,从中间向两头布放。在拐弯处等有可能损伤光缆的地方一定要小心并采取必要的保护手段。遇到在闹市区布放光缆等需要临时盘放光缆的情况时,使用8字形盘留,不让光缆受到扭力。

(5)光缆布放时,必须注意允许的额定拉力和弯曲半径的限制,在光缆敷设施工中,严禁光缆打小圈及弯折、扭曲,防止打背扣和浪涌现象。牵引力不超过光缆允许的80%,瞬间最大牵引力不超过100%,牵引力应加在光缆的加强件上,特别注意不能猛拉和发生扭结现象。光缆转弯时弯曲半径应不小于光缆外径的15~20倍。

(6)不要使用劣质的,尤其是已经弯曲变形的热缩套管,这样的套管在热缩时内部会产生应力,施加在光纤上使损耗增加。携带、存放套管时,注意清洁,不要让异物进入套管。

(7)在接续操作时,要根据收容盘的尺寸决定开剥长度,尽量开剥长一些,使光纤较从容的盘绕在收盘内(盘留长度为60~100cm )。应该重视熔接后光纤的收容(光纤的盘纤和固定),盘纤时,盘圈的半径越大,弧度越大,整个线路的损耗越小,所以一定要保持一定的半径(R≥40mm ),避免产生不必要的损耗,大芯数光缆接续的关键在收容。接续操作时,开缆刀切入光缆的深度要把握好,不要把松套管压扁使光纤受力。采用合格接头材料并按照规范和操作要求,正确封装、安装接头盒。

(8)机房内尽量整洁,尾纤应该有圈绕带保护,或单独给尾纤使用一个线,不使尾纤之间或与其他连线之间交叉缠绕,也尽量不要把尾纤(即使是临时使用)放在脚可以踩到的

地方。光缆终端时注意避免跳线在走线中出现直角,特别是不应用塑料带将跳线扎成为直角,否则光纤因长期受应力影响引起损耗增大。跳线在拐弯时应走曲线,弯曲半径应不小于40mm。布放中要保证跳线不受力、不受压,以避免跳线长期的应力疲劳。光纤成端操作(ODF )时,不要将尾纤捆扎太紧。

(9)加强光缆线路的日常维护和技术维修工作。

光纤入户(FTTH )是信息时代发展的必然,光网络互联是数字地球的明天。伴随着各级各类光纤通信网络的大量建设和运行,正视和解决光纤使用中引起的传输损耗问题必将在光纤通信工程设计、施工、维护中极大地改善和优化光纤通信网络传输

影响光纤熔接机损耗的因素有哪些?

掺杂剂和杂质离子引起的吸收损耗

光纤损耗

光纤材料中含有跃迁金属如铁、铜、铬等,它们有各自的吸收峰和吸收带并随它们价态不同而不同。由跃迁金属离子吸收引起的光纤损耗取决于它们的浓度。另外,OH-存在也产生吸收损耗,OH-的基本吸收极峰在2.7μm附近,吸收带在0.5~1.0μm范围。对于纯石英光纤,杂质引起的损耗影响可以不考虑。

解决方法:(1)光纤材料化学提纯,比如达到99.9999999%的纯度。(2)制造工艺上改进,如避免使用氢氧焰加热(汽相轴向沉积法)

原子缺陷吸收损耗

光纤材料由于受热或强烈的辐射,它会受激而产生原子的缺陷,造成对光的吸收,产生损耗,但一般情况下这种影响很小。

引起光纤损耗的因素

光纤的损耗因素主要有吸收损耗、散射损耗和其他损耗。这些损耗又可以归纳为本征损耗、制造损耗和附加损耗等。

本征损耗

本征损耗是指光纤材料固有的一种损耗,是无法避免的,它决定了光纤的损耗极限。石英光纤的本征损耗包括光纤的本征吸收和瑞利散射造成的损耗。本征吸收是石英材料本身固有的吸收,包括红外吸收和紫外吸收。红外吸收是由于分子震动引起的,它在1500~1700nm波长区对光纤通信有影响;紫外吸收是由于电子跃迁引起的,它在700~1100nm波长区对光纤通信有影响。瑞利散射是由于光纤折射率在微观上的随机起伏所引起的,这种材料折射率的不均匀性使光波产生散射。瑞利散射在600~1 600nm波段对光纤通信产生影响。

光纤制造损耗

光纤制造损耗是在制造光纤的工艺过程中产生的,主要由光纤中不纯成分的吸收(杂质吸收)和光纤的结构缺陷引起。杂质吸收中影响较大的是各种过渡金属离子和OH-离子导致的光的损耗。其中OH-离子的影响比较大,它的吸收峰分别位于950nm,1240mm和1390nm,对光纤通信系统影响较大。随着光纤制造工艺的日趋完善,过渡金属的影响已不显著,最好的工艺已可以使OH-离子在1390nm处的损耗降低到0?04dB/km,甚至小到可忽略不计的程度。此外,光纤结构的不完善也会带来散射损耗。

附加损耗是在光纤成缆之后出现的损耗,主要是由于光纤受到弯曲或微弯时,使得光产生了泄漏,造成光损耗。

除上述3类损耗外,在光纤的使用中还会存在连接损耗、耦合损耗,如果光纤中入射光功率超出某值时还会有非线性效应带来的散射损耗。

光纤的损耗特性曲线——损耗谱

将以上三类损耗相加就可以得到总的损耗,它是一条随波长而变化的曲线,叫做光纤的损耗特性曲线——损耗谱。

从石英光纤的损耗谱曲线可以看到光纤通信所使用的三个低损耗“窗口”——三个低损耗谷,它们分别是850 nm波段——短波长波段、1310nm波段和1550nm波段——长波长波段。目前,光纤通信系统主要工作在1310nm波段和1550nm波段上,尤其是1550nm波段,长距离大容量的光纤通信系统多工作在这一波段。

衰减系数相关因素

石英光纤损耗谱示意图

光纤的损耗谱形象地描绘了衰减系数与波长的关系。从光纤损耗谱可以看出,衰减系数随波长的增大呈降低趋势;损耗的峰值主要与OH-离子有关。另外,波长大于1600nm时损耗增大的原因是由于石英玻璃的吸收损耗和微(或宏)观弯曲损耗引起的。目前,光纤的制造工艺可以消除光纤在1385nm附近的0H-离子的吸收峰,使光纤在整个1300~1600nm波段都有很低的损耗。

影响光纤熔接损耗的因素较多,大体可分为光纤本征因素和非本征因素两类。 光纤本征因素是指光纤自身因素,主要有四点。光纤模场直径不一致;两根光纤芯径失配;纤芯截面不圆;纤芯与包层同心度不佳。其中光纤模场直径不一致影响最大,按CCITT国际电报电话咨询委员会建议,单模光纤的容限标准有,模场直径:9~10μm±10%,即容限约±1μm;包层直径:125±3μm;模场同心度误差≤6%,包层不圆度≤2%。

影响光纤接续损耗的非本征因素即接续技术。1轴心错位:单模光纤纤芯很细,两根对接光纤轴心错位会影响接续损耗。当错位1.2μm时,接续损耗达0.5dB。2轴心倾斜:当光纤断面倾斜1°时,约产生0.6dB的接续损耗,如果要求接续损耗≤0.1dB,则单模光纤的倾角应为≤0.3°。3端面分离:活动连接器的连接不好,很容易产生端面分离,造成连接损耗较大。当熔接机放电电压较低时,也容易产生端面分离,此情况一般在有拉力测试功能的熔接机中可以发现。4端面质量:光纤端面的平整度差时也会产生损耗,甚至气泡。包层对准式主要适用于要求不高的光纤入户等场合,所以价格相对较低;纤芯对准式光纤熔接机配备精密六马达对芯机构、特殊设计的光学镜头及软件算法,能够准确识别光纤类型并自动选用与之相匹配的熔接模式来保证熔接质量,技术含量较高,因此价格相对也会较高。

关于“什么叫光缆损耗”这个话题的介绍,今天小编就给大家分享完了,如果对你有所帮助请保持对本站的关注!

本文来自作者[丹珍]投稿,不代表乐毅号立场,如若转载,请注明出处:https://www.leheathy.com/yule/202507-904.html

(6)
丹珍的头像丹珍签约作者

文章推荐

发表回复

作者才能评论

评论列表(3条)

  • 丹珍的头像
    丹珍 2025年07月30日

    我是乐毅号的签约作者“丹珍”

  • 丹珍
    丹珍 2025年07月30日

    本文概览:网上有关“什么叫光缆损耗”话题很是火热,小编也是针对什么叫光缆损耗寻找了一些与之相关的一些信息进行分析,如果能碰巧解决你现在面临的问题,希望能够帮助到您。光缆的损耗也叫衰减,它...

  • 丹珍
    用户073001 2025年07月30日

    文章不错《什么叫光缆损耗》内容很有帮助